General Site Information
Site ID:US-Dk3
Site Name:Duke Forest - loblolly pine
Tower Team: PI: Chris Oishi <> - USDA Forest Service
PI: Kim Novick <> - Indiana University
PI: Paul Stoy <> - Montana State University
Elevation (m):163
IGBP:ENF (Evergreen Needleleaf Forests)
Climate Koeppen:Cfa (Humid Subtropical: mild with no dry season, hot summer)
Mean Annual Temperature (degrees C):14.36
Mean Annual Precipitation (mm):1170
Data Products: AmeriFlux BASE Dataset
FLUXNET LaThuile Dataset
Data Availability: AmeriFlux BASE:   8 years (Duration: 2001 - 2008)
FLUXNET LaThuile:   5 years (Duration: 2001 - 2005)
Data Downloads to Date: AmeriFlux BASE:   292 unique downloads
FLUXNET LaThuile:   76 unique downloads
Data DOIs: AmeriFlux BASE DOI: 10.17190/AMF/1246048
Description:The site was established in 1983 following a clear cut and a burn. Pinus taeda L. (loblolly pine) seedlings were planted at 2.4m by 2.4m spacing and ecosystem development has not been managed after planting. Canopy height increased from 16m in 2001 to 18m in 2004. The canopy is comprised primarily of P. taeda with some emergent Liquidambar styraciflua L. and a diverse and growing understory with 26 different woody species of diameter breast height 42.5 cm. The flux tower lies upwind of the CO2-enriched components of the free atmosphere carbon enrichment (FACE) facility located in the same pine forest. EC instrumentation is at 20.2m on a 22m tower.
Site image(s):
For additional AmeriFlux site images, see the Web site gallery

Publications relevant to understanding the site
(1) Ellsworth, D.S., Oren, R., Huang, C., Phillips, N. and Hendrey, G.R., 1995. Leaf and Canopy Responses to Elevated Co2 in a Pine Forest under Free-Air Co2 Enrichment. Oecologia, 104(2): 139-146. Reference
(10) Siqueira, M.B. et al., 2006. Multiscale model intercomparisons of CO2 and H2O exchange rates in a maturing southeastern US pine forest. Global Change Biology, 12(7): 1189-1207. Reference
(11) Stoy, P.C. et al., 2006. Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US. Global Change Biology, 12(11): 2115-2135. Reference
(2) Juang, J.Y. et al., 2007. Eco-hydrological controls on summertime convective rainfall triggers. Global Change Biology, 13(4): 887-896. Reference
(3) Katul, G.G., Ellsworth, D.S. and Lai, C.T., 2000. Modelling assimilation and intercellular CO2 from measured conductance: a synthesis of approaches. Plant Cell and Environment, 23(12): 1313-1328. Reference
(4) Lai, C.T., Katul, G., Ellsworth, D. and Oren, R., 2000. Modelling vegetation-atmosphere CO2 exchange by a coupled Eulerian-Langrangian approach. Boundary-Layer Meteorology, 95(1): 91-122. Reference
(5) McCarthy, H.R. et al., 2007. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2. Global Change Biology, 13: 2479-2497. Reference
(6) McCarthy, H.R., Oren, R., Finzi, A.C. and Johnsen, K.H., 2006. Canopy leaf area constrains [CO2]-induced enhancement of productivity and partitioning among aboveground carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 103(51): 19356-19361. Reference
(7) Novick, K.A., Oren, R., Stoy, P.C., Siqueira, M.S. and Katul, G., 2008. Nocturnal evapotranspiration in eddy covariance records from three co-located ecosystems in the Southeastern U.S.: The effect of gapfilling methods on estimates of annual fluxes. in review. Reference
(8) Palmroth, S. et al., 2005. Contrasting responses to drought of forest floor CO2 efflux in a Loblolly pine plantation and a nearby Oak-Hickory forest. Global Change Biology, 11(3): 421-434. Reference
(9) Schafer, K.V.R., Oren, R., Lai, C.T. and Katul, G.G., 2002. Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Global Change Biology, 8(9): 895-911. Reference
A. A. Arain; N. Restrepo-Coupe. 2005. Net ecosystem production in a temperate pine plantation in southeastern CanadaAgricultural and Forest Meteorology. 128:3-4, 223-241. Reference
A. C. Finzi; A. H. Schlesinger. 2002. Species control variation in litter decomposition in a pine forest exposed to elevated CO2Global Change Biology. 8:12, 1217-1229. Reference
A. C. Finzi; W. H. Schlesinger. 2003. Soil-nitrogen cycling in a pine forest exposed to 5 years of elevated carbon dioxideEcosystems. 6:5, 444-456. Reference
A. D. Richardson; D. Y. Hollinger; G. G. Burba; K. J. Davis; L. B. Flanagan; G. G. Katul; J. W. Munger; D. M. Ricciuto; P. C. Stoy; A. E. Suyker; S. B. Verma; S. C. Wofsy. 2006. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxesAgricultural and Forest Meteorology. 136:1-2, 1-18. Reference
B. Bond-Lamberty; C. K. Wang; S. T. Gower. 2004. A global relationship between the heterotrophic and autotrophic components of soil respiration?Global Change Biology. 10:10, 1756-1766. Reference
C. A. Maier; T. J. Albaugh; H. L. Allen; P. M. Dougherty. 2004. Respiratory carbon use and carbon storage in mid-rotation loblolly pine (Pinus taeda L.) plantations: the effect of site resources on the stand carbon balanceGlobal Change Biology. 10:8, 1335-1350. Reference
C. T. Lai; G. Katul; J. Butnor; D. Ellsworth; R. Oren. 2002. Modelling night-time ecosystem respiration by a constrained source optimization methodGlobal Change Biology. 8:2, 124-141. Reference
D. F. Hui; S. Q. Wan; B. Su; G. Katul; R. Monson; Y. Q. Luo. 2004. Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimationsAgricultural and Forest Meteorology. 121:1-2, 93-111. Reference
D. F. Hui; Y. Q. Luo; G. Katul. 2003. Partitioning interannual variability in net ecosystem exchange between climatic variability and functional changeTree Physiology. 23:7, 433-442. Reference
D. S. Ellsworth; P. B. Reich; E. S. Naumburg; G. W. Koch; M. E. Kubiske; S. D. Smith. 2004. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO(2) across four free-air CO2 enrichment experiments in forest, grassland and desertGlobal Change Biology. 10:12, 2121-2138. Reference
D. W. Johnson. 1999. Simulated nitrogen cycling response to elevated CO2 in Pinus taeda and mixed deciduous forestsTree Physiology. 19:4-5, 321-327. Reference
E. A. Davidson; K. Savage; P. Bolstad; D. A. Clark; P. S. Curtis; D. S. Ellsworth; P. J. Hanson; B. E. Law; Y. Luo; K. S. Pregitzer; J. C. Randolph; D. Zak. 2002. Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurementsAgricultural and Forest Meteorology. 113:1-4, 39-51. Reference
E. Falge; D. Baldocchi; J. Tenhunen; M. Aubinet; P. Bakwin; P. Berbigier; C. Bernhofer; G. Burba; R. Clement; K. J. Davis; J. A. Elbers; A. H. Goldstein; A. Grelle; A. Granier; J. Guomundsson; D. Hollinger; A. S. Kowalski; G. Katul; B. E. Law; Y. Malhi; T. Meyers; R. K. Monson; J. W. Munger; W. Oechel; K. T. Paw; K. Pilegaard; U. Rannik; C. Rebmann; A. Suyker; R. Valentini; K. Wilson; S. Wofsy. 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurementsAgricultural and Forest Meteorology. 113:1-4, 53-74. Reference
E. Naumburg; D. S. Ellsworth. 2002. Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree speciesTree Physiology. 22:6, 393-401. Reference
G. G. Katul; C. T. Lai; J. D. Albertson; B. Vidakovic; K. V. R. Schafer; C. I. Hsieh; R. Oren. 2001. Quantifying the complexity in mapping energy inputs and hydrologic state variables into land-surface fluxesGeophysical Research Letters. 28:17, 3305-3307. Reference
G. Katul; C. T. Lai; K. Schafer; B. Vidakovic; J. Albertson; D. Ellsworth; R. Oren. 2001. Multiscale analysis of vegetation surface fluxes: from seconds to yearsAdvances in Water Resources. 24:9-10, 1119-1132. Reference
G. Katul; R. Leuning; R. Oren. 2003. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport modelPlant, Cell and Environment. 26:3, 339-350. Reference
Hibbard, et al. 2005. Biogeochemistry, 73, 29-70 Reference
J. D. Albertson; G. G. Katul; P. Wiberg. 2001. Relative importance of local and regional controls on coupled water, carbon, and energy fluxesAdvances in Water Resources. 24:9-10, 1103-1118. Reference
J. D. Herrick; R. B. Thomas. 1999. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (Liquidambar styraciflua) in a forest ecosystemTree Physiology. 19:12, 779-786. Reference
J. G. Hamilton; E. H. DeLucia; K. George; S. L. Naidu; A. C. Finzi; W. H. Schlesinger. 2002. Forest carbon balance under elevated CO2Oecologia. 131:2, 250-260. Reference
J. R. Butnor; K. H. Johnsen; R. Oren; G. G. Katul. 2003. Reduction of forest floor respiration by fertilization on both carbon dioxide-enriched and reference 17-year-old loblolly pine standsGlobal Change Biology. 9:6, 849-861. Reference
John R. Butnor; Kurt H. Johnsen; Chris A. Maier. 2005. Soil properties differently influence estimates of soil CO2 efflux from three chamber-based measurement systemsBiogeochemistry. 73:1, 283-301. Reference
Juang, J.-Y., Katul, G.G., Siqueira, M.B.S., Stoy, P.C., & Novick, K.A. (2007) Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern US. Geophysical Research Letters, 34, doi:10.1029/2007GL031296. Reference
K. H. Wesson; G. Katul; C. T. Lai. 2001. Sensible heat flux estimation by flux variance and half-order time derivative methodsWater Resources Research. 37:9, 2333-2343. Reference
K. V. R. Schafer; R. Oren; D. S. Ellsworth; C. T. Lai; J. D. Herrick; A. C. Finzi; D. D. Richter; G. G. Katul. 2003. Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystemGlobal Change Biology. 9:10, 1378-1400. Reference
Katul, G., Oren, R., Ellsworth, D., Hsieh, C.I., Phillips, N., & Lewin, K. (1997) A lagrangian dispersion model for predicting CO2 sources, sinks, and fluxes in a uniform loblolly pine (Pinus taeda L.) stand. Journal of Geophysical Research-Atmospheres, 102, 9309-9321. Reference
Lai, C.-T. & Katul, G.G. (2000) The dynamic role of root-water uptake in coupling potential to actual transpiration. Advances in Water Resources, 23, 427-439. Reference
Luo et al 2001: Gross Primary Productivity in Duke Forest: …. Ecological Applications Vol 11: 239-252 Reference
M. Suwa; G. G. Katul; R. Oren; J. Andrews; J. Pippen; A. Mace; W. H. Schlesinger. 2004. Impact of elevated atmospheric CO2 on forest floor respiration in a temperate pine forestGlobal Biogeochemical Cycles. 18:2. Reference
Matamala, R.; Gonzalez-Meler, M. A.; Jastrow, J. D.; Norby, R. J.; Schlesinger, W. H.. 2004. Response to comment on Impacts of fine root turnover on forest NPP and soil C sequestration potentialScience. 304:5678: June 18, 2005, 1385-1387. Reference
N.-H. Oh, D.D. Richter / Geoderma 126 (2005) 5–25 Reference
Nathan, R. & Katul, G.G. (2005) Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind. Proc. Natl. Acad. Sci. USA, 102, 8251-8256. Reference
Oishi, A.C., Oren, R., & Stoy, P.C. (2008) Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements. Global Change Biology, doi:10.1016/j.agrformet.2008.06.013 Reference
Palmroth, S., Maier, C.A., McCarthy, H.R., Oishi, A.C., Kim, H.-S., Johnsen, K.H., Katul, G.G., & Oren, R. (2005) Contrasting responses to drought of the forest floor CO2 efflux in a loblolly pine plantation and a nearby oak-hickory forest. Global Change Biology, 11, 421-434. Reference
R. Matamala; M. A. Gonzalez-Meler; J. D. Jastrow; R. J. Norby; W. H. Schlesinger. 2003. Impacts of fine root turnover on forest NPP and soil C sequestration potentialScience. 302:5649, 1385-1387. Reference
R. Matamala; M. A. Gonzalez-Meler; J. D. Jastrow; R. J. Norby; W. H. Schlesinger. 2004. Response to comment on ""Impacts of fine root turnover on forest NPP and soil C sequestration potential""Science. 304:5678. Reference
R. Oren; C. I. Hsieh; P. Stoy; J. Albertson; H. R. McCarthy; P. Harrell; G. G. Katul. 2006. Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy-covariance measurementsGlobal Change Biology. 12, 883-896. Reference
R. Oren; D. E. Pataki. 2001. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forestsOecologia. 127:4, 549-559. Reference
R. Oren; D. S. Ellsworth; K. H. Johnsen; N. Phillips; B. E. Ewers; C. Maier; K. V. R. Schafer; H. McCarthy; G. Hendrey; S. G. McNulty; G. G. Katul. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphereNature. 411:6836, 469-472. Reference
Siqueira, M.B.S., Katul, G.G., Sampson, D.A., Stoy, P.C., Juang, J.-Y., McCarthy, H.R., & Oren, R. (2006) Multi-scale model inter-comparisons of CO2 and H2O exchange rates in a maturing southeastern U.S. pine forest. Global Change Biology, 12, 1189-1207. Reference
Stoy, P.C., Katul, G.G., Siqueira, M.B.S., Juang, J.-Y., McCarthy, H.R., Oishi, A.C., Uebelherr, J.M., Kim, H.-S., & Oren, R. (2006a) Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern U.S. Global Change Biology, 12, 2115-2135. Reference
Stoy, P.C., Katul, G.G., Siqueira, M.B.S., Juang, J.-Y., Novick, K., McCarthy, H.R., Oishi, A.C., & Oren, R. (2008) The role of vegetation in determining carbon sequestration along ecological succession in the southeastern United States. Global Change Biology, 14, 1409?1427. Reference
Stoy, P.C., Katul, G.G., Siqueira, M.B.S., Juang, J.-Y., Novick, K.A., & Oren, R. (2006b) An evaluation of methods for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agricultural and Forest Meteorology, 141, 2-18. Reference
Y. Q. Luo; L. H. Wu; J. A. Andrews; L. White; R. Matamala; K. V. R. Schafer; W. H. Schlesinger. 2001. Elevated CO2 differentiates ecosystem carbon processes: Deconvolution analysis of Duke Forest FACE dataEcological Monographs. 71:3, 357-376. Reference

These pages show the current information available at about this tower.
**Site Team Only** If any of this information is wrong or missing, please submit corrections and updates via