General Site Information
Site ID:US-Blo
Site Name:Blodgett Forest
Tower Team: PI: Allen Goldstein <ahg@berkeley.edu> - University of California, Berkeley
AncContact: Silvano Fares <silvano.fares@crea.gov.it> - Entecra
Latitude:38.8953
Longitude:-120.6328
Elevation (m):1315
NetworkAmeriFlux
IGBP:ENF (Evergreen Needleleaf Forests)
Climate Koeppen:Csa (Mediterranean: mild with dry, hot summer)
Mean Annual Temperature (degrees C):11.09
Mean Annual Precipitation (mm):1226
Data Products: AmeriFlux BASE Dataset
FLUXNET2015 Dataset
FLUXNET LaThuile Dataset
Data Availability: AmeriFlux BASE:   11 years (Duration: 1997 - 2007)
FLUXNET2015:   11 years (Duration: 1997 - 2007)
FLUXNET LaThuile:   10 years (Duration: 1997 - 2006)
Data Downloads to Date: AmeriFlux BASE:   185 unique downloads
FLUXNET2015:   528 unique downloads
FLUXNET LaThuile:   240 unique downloads
Data DOIs: AmeriFlux BASE DOI: 10.17190/AMF/1246032
Description:The flux tower site at Blodgett Forest is on a 1200 ha parcel of land owned by Sierra Pacific Industries in the Sierra Nevada range near Georgetown, California. The field site was established in May 1997 with continuous operation since May 1999. The site is situated in a ponderosa pine plantation, mixed-evergreen coniferous forest, located adjacent to Blodgett Forest Research Station. The Mediterranean-type climate of California is characterized by a protracted summer drought, with precipitation occurring mainly from October through May. The infrastructure for the ecosystem scale flux measurements includes a walkup measurement tower, two temperature controlled instrument buildings, and an electrical generation system powered by a diesel generator. Typical wind patterns at the site include upslope flow during the day (from the west) and downslope flow at night (from the east). The plantation is relatively flat, and contains a homogenous mixture of evenly aged ponderosa pine with other trees and shrubs scattered throughout the ecosystem making up less than 30% of the biomass. The daytime fetch for the tower measurements extends approximately 200 m to the southwest of the tower (this region contributes ~90% of the daytime flux), thus remote sensing images to be used for modeling should probably be centered approximately 100 m from the tower at an angle of 225 deg.
Site image(s):
For additional AmeriFlux site images, see the Web site gallery

Publications relevant to understanding the site
BibliographyUsage
A. H. Goldstein; G. W. Schade. 2000. Quantifying biogenic and anthropogenic contributions to acetone mixing ratios in a rural environment. Atmospheric Environment. 34:29-30, 4997-5006. Reference
A. H. Goldstein; M. McKay; M. R. Kurpius; G. W. Schade; A. Lee; R. Holzinger; R. A. Rasmussen. 2004. Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs. Geophysical Research Letters. 31:22. Reference
A. H. Goldstein; N. E. Hultman; J. M. Fracheboud; M. R. Bauer; J. A. Panek; M. Xu; Y. Qi; A. B. Guenther; W. Baugh. 2000. Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA). Agricultural and Forest Meteorology. 101:2-3, 113-129. Reference
A. Lee; G. W. Schade; R. Holzinger; A. H. Goldstein. 2005. A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux. Atmospheric Chemistry and Physics. 5, 505-513. Reference
B. Baker; A. Guenther; J. Greenberg; A. Goldstein; R. Fall. 1999. Canopy fluxes of 2-methyl-3-buten-2-ol over a ponderosa pine forest by relaxed eddy accumulation: Field data and model comparison. Journal of Geophysical Research-Atmospheres. 104:D21, 26107-26114. Reference
D. W. Gray; M. T. Lerdau; A. H. Goldstein. 2003. Influences of temperature history, water stress, and needle age on methylbutenol emissions. Ecology. 84:3, 765-776. Reference
Daniel A. Sims; Abdullah F. Rahman; Vicente D. Cordova; Dennis D. Baldocchi; Lawrence B. Flanagan; Allen H. Goldstein; David Y. Hollinger; Laurent Misson; Russell K. Monson; Hans P. Schmid. 2005. Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eight-day mean flux. Agricultural and Forest Meteorology. 131:1-2, 1-12. Reference
Dennis W. Gray; Allen H. Goldstein; Manuel T. Lerdau. 2005. The influence of light environment on photosynthesis and basal methylbutenol emission from Pinus ponderosa. Plant, Cell and Environment. 28:12, 1463-1474. Reference
E. Falge; D. Baldocchi; J. Tenhunen; M. Aubinet; P. Bakwin; P. Berbigier; C. Bernhofer; G. Burba; R. Clement; K. J. Davis; J. A. Elbers; A. H. Goldstein; A. Grelle; A. Granier; J. Guomundsson; D. Hollinger; A. S. Kowalski; G. Katul; B. E. Law; Y. Malhi; T. Meyers; R. K. Monson; J. W. Munger; W. Oechel; K. T. Paw; K. Pilegaard; U. Rannik; C. Rebmann; A. Suyker; R. Valentini; K. Wilson; S. Wofsy. 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology. 113:1-4, 53-74. Reference
G. B. Dreyfus; G. W. Schade; A. H. Goldstein. 2002. Observational constraints on the contribution of isoprene oxidation to ozone production on the western slope of the Sierra Nevada, CaliforniaJournal of Geophysical Research-Atmospheres. 107:D19, art. no.-4365. Reference
G. W. Schade; A. H. Goldstein. 2006. Seasonal measurements of acetone and methanol: Abundances and implications for atmospheric budgets. Global Biogeochemical Cycles. 20:doi: 10.1029/2005GB002566, GB1011 (pp.1-10). Reference
G. W. Schade; A. H. Goldstein. 2001. Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. Journal of Geophysical Research-Atmospheres. 106:D3, 3111-3123. Reference
G. W. Schade; A. H. Goldstein. 2003. Increase of monoterpene emissions from a pine plantation as a result of mechanical disturbances. Geophysical Research Letters. 30:7, art. no.-1380. Reference
G. W. Schade; A. H. Goldstein; D. W. Gray; M. T. Lerdau. 2000. Canopy and leaf level 2-methyl-3-buten-2-ol fluxes from a ponderosa pine plantationAtmospheric Environment. 34:21, 3535-3544. Reference
G. W. Schade; A. H. Goldstein; M. S. Lamanna. 1999. Are monoterpene emissions influenced by humidity? Geophysical Research Letters. 26:14, 2187-2190. Reference
G. W. Schade; G. B. Dreyfus; A. H. Goldstein. 2002. Atmospheric methyl tertiary butyl ether (MTBE) at a rural mountain site in California. Journal of Environmental Quality. 31:4, 1088-1094. Reference
J. A. Panek; A. H. Goldstein. 2001. Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake. Tree Physiology. 21:5, 337-344. Reference
J. A. Panek; M. R. Kurpius; A. H. Goldstein. 2002. An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem. Environmental Pollution. 117:1, 93-100. Reference
J. B. Fisher; T. A. DeBiase; Y. Qi; M. Xu; A. H. Goldstein. 2005. Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environmental Modelling & Software. 20:6, 783-796. Reference
J. Tang; Y. Qi; M. Xu; L. Misson; A. H. Goldstein. 2005. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada. Tree Physiology. 25:1, 57-66. Reference
Jianwu Tang; Laurent Misson; Alexander Gershenson; Weixin Cheng; Allen H. Goldstein. 2005. Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agricultural and Forest Meteorology. 132:3-4, 212-227. Reference
K. B. Wilson; D. Baldocchi; E. Falge; M. Aubinet; P. Berbigier; C. Bernhofer; H. Dolman; C. Field; A. Goldstein; A. Granier; D. Hollinger; G. Katul; B. E. Law; T. Meyers; J. Moncrieff; R. Monson; J. Tenhunen; R. Valentini; S. Verma; S. Wofsy. 2003. Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sitesJournal of Geophysical Research-Atmospheres. 108:D21. Reference
K. B. Wilson; D. D. Baldocchi; M. Aubinet; P. Berbigier; C. Bernhofer; H. Dolman; E. Falge; C. Field; A. Goldstein; A. Granier; A. Grelle; T. Halldor; D. Hollinger; G. Katul; B. E. Law; A. Lindroth; T. Meyers; J. Moncrieff; R. Monson; W. Oechel; J. Tenhunen; R. Valentini; S. Verma; T. Vesala; S. Wofsy. 2002. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resources Research. 38:12, 1294-1305. Reference
K. Wilson; A. Goldstein; E. Falge; M. Aubinet; D. Baldocchi; P. Berbigier; C. Bernhofer; R. Ceulemans; H. Dolman; C. Field; A. Grelle; A. Ibrom; B. E. Law; A. Kowalski; T. Meyers; J. Moncrieff; R. Monson; W. Oechel; J. Tenhunen; R. Valentini; S. Verma. 2002. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology. 113:1-4, 223-243. Reference
L. G. Miller; R. M. Kalin; S. E. McCauley; J. T. G. Hamilton; D. B. Harper; D. B. Millet; R. S. Oremland; A. H. Goldstein. 2001. Large carbon isotope fractionation associated with oxidation of methyl halides by methylotrophic bacteria. Proceedings of the National Academy of Sciences of the United States of America. 98:10, 5833-5837. Reference
L. Misson; K. P. Tu; R. Boniello; A. H. Goldstein. 2006. Seasonality of photosynthetic parameters in a multi-specific and vertically complex forest ecosystem in the Sierra Nevada California. Tree Physiology. 26:6, 729-741. Reference
L. Misson; J. A. Panek; A. H. Goldstein. 2004. A comparison of three approaches to modeling leaf gas exchange in annually drought-stressed ponderosa pine forests. Tree Physiology. 24:5, 529-541. Reference
L. Misson; M. Lunden; M. McKay; A. H. Goldstein. 2005. Atmospheric aerosol light scattering and surface wetness influence the diurnal pattern of net ecosystem exchange in a semi-arid ponderosa pine plantation. Agricultural and Forest Meteorology. 129:1-2, 69-83. Reference
Laurent Misson; Jianwu Tang; Ming Xu; Megan McKay; Allen Goldstein. 2005. Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation. Agricultural and Forest Meteorology. 130:3-4, 207-222. Reference
Lunden, M. M., Black, D. R., McKay, M., Revzan, K. L., Goldstein, A. H., & Brown, N. J. (2006). Characteristics of fine particle growth events observed above a forested ecosystem in the Sierra Nevada Mountains of California. Aerosol science and technology, 40(5), 373-388. Reference
M. R. Bauer; N. E. Hultman; J. A. Panek; A. H. Goldstein. 2000. Ozone deposition to a ponderosa pine plantation in the Sierra Nevada Mountains (CA): A comparison of two different climatic years. Journal of Geophysical Research-Atmospheres. 105:D17, 22123-22136. Reference
M. R. Kurpius; A. H. Goldstein. 2003. Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. Geophysical Research Letters. 30:7, art. no.-1371. Reference
M. R. Kurpius; J. A. Panek; N. T. Nikolov; M. McKay; A. H. Goldstein. 2003. Partitioning of water flux in a Sierra Nevada ponderosa pine plantation. Agricultural and Forest Meteorology. 117:3-4, 173-192. Reference
M. R. Kurpius; M. McKay; A. H. Goldstein. 2002. Annual ozone deposition to a Sierra Nevada ponderosa pine plantation. Atmospheric Environment. 36:28, 4503-4515. Reference
M. Reichstein; A. Rey; A. Freibauer; J. Tenhunen; R. Valentini; J. Banza; P. Casals; Y. F. Cheng; J. M. Grunzweig; J. Irvine; R. Joffre; B. E. Law; D. Loustau; F. Miglietta; W. Oechel; J. M. Ourcival; J. S. Pereira; A. Peressotti; F. Ponti; Y. Qi; S. Rambal; M. Rayment; J. Rom. 2003. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles. 17:4. Reference
M. S. Lamanna; A. H. Goldstein. 1999. In situ measurements of C2-C10 volatile organic compounds above a Sierra Nevada ponderosa pine plantation. Journal of Geophysical Research-Atmospheres. 104:D17, 21247-21262. Reference
M. Xu; T. A. DeBiase; Y. Qi; A. Goldstein; Z. G. Liu. 2001. Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains, California. Tree Physiology. 21:5, 309-318. Reference
Misson, L., Gershenson, A., Tang, J., McKay, M., Cheng, W., & Goldstein, A. (2006). Influences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest. Tree Physiology, 26(7), 833-844. Reference
N. G. McDowell; D. R. Bowling; A. Schauer; J. Irvine; B. J. Bond; B. E. Law; J. R. Ehleringer. 2004. Associations between carbon isotope ratios of ecosystem respiration, water availability and canopy conductance. Global Change Biology. 10:10, 1767-1784. Reference
P. A. Cleary; J. G. Murphy; P. J. Wooldridge, D. A. Day; D. B. Millet; M. McKay; A. H. Goldstein; R. C. Cohen. 2005. Observations of total alkyl nitrates within the Sacramento Urban Plume. Atmospheric Chemistry and Physics Discussions. 5, 4801-4843. Reference
R. Holzinger; A. Lee; M. McKay; A. H. Goldstein. 2005. Seasonal variability of monotrepene emission factors for a pondersoa pine plantation in CaliforniaAtmospheric Chemistry and Physics Discussions. 5, 8791-8810. Reference
R. Holzinger; A. Lee; K. T. Paw; A. H. Goldstein. 2005. Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmospheric Chemistry and Physics. 5, 67-75. Reference
R. S. Spaulding; G. W. Schade; A. H. Goldstein; M. J. Charles. 2003. Characterization of secondary atmospheric photooxidation products: Evidence for biogenic and anthropogenic sources. Journal of Geophysical Research-Atmospheres. 108:D8, art. no.-4247. Reference

These pages show the current information available at http://ameriflux.lbl.gov about this tower.
**Site Team Only** If any of this information is wrong or missing, please submit corrections and updates via http://ameriflux.lbl.gov/web-submit-ui/?site_id=US-Blo